we are left with the work terms on the boundaries of \mathcal{R} .

$$
\oint_C Pdx + Qdy = \int \int_{\mathcal{R}} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy
$$

work when we sum of all work if

move once CCW around move once CCW around all

boundary curve C (dxdy) area elements of $\mathcal R$

inside C

Example: 4.10

Given a 2D force field, $\vec{F}(x,y) = \hat{i}(xy^3) + \hat{j}(x^2y)$ and a rectangular path C defined as $0 \leq x \leq 1$ and $-1 \leq y \leq 1$ where we move around the path in a counter clockwise direction:

Verify Green's theorem

$$
\oint_C Pdx + Qdy = \int \int_{\mathcal{R}} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dxdy
$$

with

$$
P = xy^3
$$

$$
Q = x^2y
$$

LHS: For the general curve C, we need the parametric form to compute 4 \overline{c} $P dx+Q dy$. However, because of the shape of C in this example, a parametric representation of the curve is not required.

1. on C_1 :

$$
y=1\qquad dy=0\qquad P=x\qquad Q=x^2
$$

$$
W = \int_{C_1} Pdx + Qdy = \int_{x=1}^{0} xdx = \left. \frac{x^2}{2} \right|_{1}^{0} = -\frac{1}{2}
$$

2. on C_2 :

 $x = 0$ $dx = 0$ $P = 0$ $Q = 0$

$$
\int_{C_2} Pdx + Qdy = 0
$$

3. on C_3 :

$$
y=-1 \hspace{5mm} dy=0 \hspace{5mm} P=-x \hspace{5mm} Q=-x^2
$$

$$
\int_{C_3} P dx + Q dy = \int_{x=0}^1 - x dx = -\frac{x^2}{2}\Big|_0^1 = -\frac{1}{2}
$$

4. on C_4 :

$$
x=1 \qquad dx=0 \qquad P=y^3 \qquad Q=y
$$

$$
\int_{C_4} P dx + Q dy = \int_{y=-1}^1 y dy = \left. \frac{y^2}{2} \right|_{-1}^1 = 0
$$

Therefore

$$
W = \oint_C Pdx + Qdy = -\frac{1}{2} - \frac{1}{2} = -1 \, Joules
$$

A negative value of W implies that work has to be supplied by the object.

RHS:

$$
\int\int_{\mathcal{R}}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)dxdy=\int\int_{\mathcal{R}}\left(2xy-3xy^{2}\right)dxdy
$$

In this particular case the calculation of the double integral is made easier because $\mathcal R$ limits are all constants.

$$
\int_{x=0}^{1} \left[\int_{y=-1}^{1} (2xy - 3xy^2) dy \right] dx = \int_{x=0}^{1} \left[(xy^2 - xy^3) \Big|_{y=-1}^{1} \right] dx
$$

$$
= \int_{x=0}^{1} (-2x) dx = -x^2 \Big|_{0}^{1} = -1 \, Joules
$$

Therefore LHS = RHS.

We can use Green's theorem to change a line integral computation of W to a $\int \int_{\mathcal{R}}$ instead.