we are left with the work terms on the boundaries of \mathcal{R} .

$$\oint_C P dx + Q dy \;\;=\;\; \int \int_{\mathcal{R}} \left(rac{\partial Q}{\partial x} - rac{\partial P}{\partial y}
ight) dx dy$$

work when we

sum of all work if

move once CCW around

move once CCW around all

(dxdy) area elements of $\mathcal R$

boundary curve C

inside C

Example: 4.10

Given a 2D force field, $\vec{F}(x, y) = \hat{i}(xy^3) + \hat{j}(x^2y)$ and a rectangular path C defined as $0 \le x \le 1$ and $-1 \le y \le 1$ where we move around the path in a counter clockwise direction:

Verify Green's theorem

$$\oint_C P dx + Q dy = \int \int_{\mathcal{R}} \left(rac{\partial Q}{\partial x} - rac{\partial P}{\partial y}
ight) dx dy$$

with

$$P = xy^3$$

 $Q = x^2y^3$

LHS: For the general curve C, we need the parametric form to compute $\oint_C Pdx + Qdy$. However, because of the shape of C in this example, a parametric representation of the curve is not required.

1. on C_1 :

$$y=1$$
 $dy=0$ $P=x$ $Q=x^2$

$$W = \int_{C_1} P dx + Q dy = \int_{x=1}^0 x dx = \left. rac{x^2}{2}
ight|_1^0 = -rac{1}{2}$$

2. on C_2 :

x=0 dx=0 P=0 Q=0

$$\int_{C_2}\!Pdx+Qdy=0$$

3. on C_3 :

$$y=-1$$
 $dy=0$ $P=-x$ $Q=-x^2$

$$\int_{C_3} P dx + Q dy = \int_{x=0}^1 - x dx = \left. - rac{x^2}{2}
ight|_0^1 = - rac{1}{2}$$

4. on C_4 :

$$x=1$$
 $dx=0$ $P=y^3$ $Q=y$

$$\int_{C_4} P dx + Q dy = \int_{y=-1}^1 y dy = \left. rac{y^2}{2}
ight|_{-1}^1 = 0$$

Therefore

$$W=\oint_C Pdx+Qdy=-rac{1}{2}-rac{1}{2}=-1 \ Joules$$

A negative value of \boldsymbol{W} implies that work has to be supplied by the object.

RHS:

$$\int \int_{\mathcal{R}} \left(rac{\partial Q}{\partial x} - rac{\partial P}{\partial y}
ight) dx dy = \int \int_{\mathcal{R}} \left(2xy - 3xy^2
ight) dx dy$$

In this particular case the calculation of the double integral is made easier because \mathcal{R} limits are all constants.

$$\begin{split} \int_{x=0}^{1} \left[\int_{y=-1}^{1} (2xy - 3xy^2) dy \right] dx &= \int_{x=0}^{1} \left[(xy^2 - xy^3) \Big|_{y=-1}^{1} \right] dx \\ &= \int_{x=0}^{1} (-2x) dx = -x^2 \Big|_{0}^{1} = -1 \ Joules \end{split}$$

Therefore LHS = RHS.

We can use Green's theorem to change a line integral computation of W to a $\int \int_{\mathcal{R}}$ instead.