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Analysis of Control Volumes
� A water heater, a car radiator, a turbine, and a 

compressor are examples of control volumes.
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Conservation of Mass Principle
� Mass, like energy, is a conserved property, and it 

cannot be created or destroyed. 
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Mass & Volume Flow Rates
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Conservation of Energy Principle
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Flow Work
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Flow Work

PAF =

PVPALFLWflow ===

υPwflow =

Flow work per unit mass: 

Work done on the fluid element:

Force applied on the fluid element:
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Total Energy

� By using the enthalpy, one does not need to 
be concerned about the flow work
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Steady-State Flow Process
1) No properties (intensive or 

extensive) within the control 
volume change with time. 

2) No properties change at the 
boundaries of the control 
volume with time. 

3) The heat and work 
interactions between the 
system and its surroundings 
do not change with time. 
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Conservation of Mass
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Conservation of Energy
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Conservation of Energy
For single stream devices:

For negligible change in the fluid kinetic and potential energy:
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Steady Flow Engineering Devices
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Nozzles & Diffusers
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Example
Determine 
� (a) the mass flow 

rate of the air and
� (b) the temperature 

of the air leaving the 
diffuser.
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Turbines & Compressors
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Example
� Assuming the changes in 

kinetic and potential energies 
are negligible, determine the 
necessary power input to the 
compressor.
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Example
1. Compare ∆h, ∆ke, and ∆pe
2. Determine the work done 

per unit mass of hot gases
3. Calculate the mass flow 

rate of the steam

� Gases can be treated as air
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Throttling Valves
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Mixing Chambers
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Heat Exchangers

� Heat transfer associated with a heat exchanger may 
be zero or nonzero depending on how the system is 
selected.
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Example
� Neglecting any pressure 

drops, determine:
1. Mass flow rate of the 

cooling water required, and
2. Heat transfer rate from the 

engine oil to water.
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Pipe & Duct Flow
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Example
� If heat is lost from the air in 

the duct to the surroundings 
at a rate of 200 W, determine 
the exit temperature of air.


